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V Yu Irkhin and M I Katsnelson 
Institute of Metal Physics, 620219 Ekaterinburg. Russia 
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AbslrneL A scaling consideration of the magnetically ordered slate in ancentrated 
Kando lat t icc~ is carried out within the periodic s-f exchange modcl. Renormalization- 
group equations for the effective s-f parameter and spin-fluctuation frequenq are derived 
laking account of lhe influence of intersite exchange interactions on the Kondo effect 
in paramagnetic, ferromagnetic and antiferromagnetic states. Depending an thc relation 
klween the one-impurity Kondo lempcrature TK and the bare spin-fluctuation frequency 
U, three regimes arc pssiblc: (i) the strong coupling regime where all the conduction 
electrons are b u n d  into singlet states. which occurs at W < TK; (ii) the regime of a 
'Kondo' magnet with an appreciable. but not total, ampensation of magnetic momcnts, 
at TK < Gi < AT,, A 2 I; and (iii) the regime of 'usual' magneu with small logiirilhmic 
corrections to G and saturation magnetic moment 5, at Gi B TK. In the wsc of thc 
ferromagnetic b f  exchange interaction, explicit expressions for thc rcnormalizations of 
S and E are obtained. 

- 

- 

1. Introduction 

Experimental investigations over the last few years have convincingly dCm0nStrdted 
that magnetic ordering is widespread among heavy-fermion systems and other 
anomalous 4f and 5f compounds, which are treated as concentrated Kondo systems. 
There exist numerous examples of systems (CeRh,B,, CeAI,, TmS, CeB,, UAgCu,, 
YbNiSn) where 'Kondo' anomalies in thermodynamic and transport properties coexist 
with magnetic ordering, the saturation moment M ,  being of the order of 1~1". As 
for heavy-fermion systems themselves, the situation is more complicated. There 
exists unambiguous evidence for antiferromagnetic ordering in UCd,, and U,Zn,, 
with the same order of magnitude as M ,  [I]. For UPt,, M ,  2 2 x 10-21~u [2].  
Antiferromagnetic ordering with very small M ,  was also reported for CeAI, [3], 
UBe,, [4] and CeCu,Si, [SI. However, the data for CeAI, and UBe,,, respectively, 
were not confirmed in [6, 71. Generally, a characteristic feature of heavy-fermion 
magnets is high sensitivity of M ,  to external factors such as pressure and doping 
by a small amount of impurities. So, UBe,, becomes an antiferromagnet with an 
apprcciable M, under a prcssure P > 23 kbar; on the contrary, CeAI, becomes 
paramagnetic above P = 3 kbar [SI. The moment i n  UPt, increases up to values 
of the order of lp13 upon adding 5% of Pd instead of Pt, or Th instead of U [9] .  
These exotic propertics of Kondo magnets have stimulated a number of attempts 
at their theoretical explanation [lG15]. Howcvcr, results of various approaches arc 
contradictow. In the present paper we treat the problem of magnetic Kondo lattices 
using a simple scaling consideration within the s-f exchange model. 
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Specifics of Kondo magnets are determined by the competition between spin 
dynamics due to intrasite interactions among f spins (with a characteristic scale E) and 
the intersite Kondo effect characterized by the Kondo temperature TK. At T > T~ 
the ‘Kondo’ logarithms in perturbation corrections to various physical quantities are 
smeared: In T + f In( TZ + GZ) [IO], the quantity G itself decreasing on lowering T. 
A hypothesis was put forward in Ill] that a unified energy scale G(T < TK) - T~ 
is established. This hypothesis is based on experimental data on magnetic neutron 
scattering in dense Kondo systems: the width of the quasi-elastic peak is of the 
same order of magnitude as the Fermi degeneracy temperature determined from 
thermodynamic and transport properties. In the framework of such a picture, the 
Kondo compensation of magnetic moments on lowering T stops at T - TK, which 
results in the formation of a state with small but finite M.. Here we consider the 
conditions for the occurrence of this regime as functions of bare dues of TK and w. 

In sections 2 and 3 we derive the system of scaling equations for the effective 
s-f interaction, spin dynamics frequency and magnetic moment in various magnetic 
phases. In section 4 we investigate these equations to obtain explicit estimations for 
tlic magnetic characteristics. In section 5 we discuss the applicability of the results 
obtained to real f systems. 

2. Effective s-f interaction in Kondo lattices 

Wc proceed with the Hamiltonian of the periodic s f  exchange model 

H =  x E k c i o c k o - l  u m P s q c : + q , m c k P -  c JqS9S-q (1) 
k , o  kqa8 q 

where c:, are the creation operators for conduction electrons with quasi-momentum 
k and spin projection U ,  ck is the hand energy referred to the chemical potential, 
S, are the Fourier components of the spindensity operators for the f subsystem, 
U are the Pauli matrices, I is the s f  exchange parameter, and J ,  are the Fourier 
transforms of the ‘direct’ f-f exchange integrals J R .  As a rule, in real anomalous 
rare-earth compounds, J R  are nothing but RKKY (Ruderman-Kittel-Kasuya-Yoshida) 
indirect exchange parameters. However, when constructing perturbation theory in I, 
it is convenient to consider Jq as independent parameters and include the last term 
in (1) in the zero-order Hamiltonian. We apply the ‘poor man scaling’ approach by 
Anderson [16], who considered the case of one Kondo impurity. ?b this end we divide 
the space of conduction-electron states into layers with energies C < E < C + 6C 
and calculate the contribution of each layer to the effective s-f parameter I,[( C ) .  In 
the case of the lattice of interacting f spins, the latter is defined in a different way 
in comparison with the one-impurity situation. Moreover, the definitions are slightly 
different for the paramagnetic (PM), ferromagnetic (FM) and antiferromagnetic (MM) 
phases. 

lb determine I e f ( E )  in these three cases, we calculate the self-energy C of the 
retarded anticommutator Green function 

First we consider the simplest m case. Using the Holstein-Primakoff representation 
for spin operators, 

C , o ( E )  = ((ckg I C i o ) ) E  = [ E -  ‘ k  - C k o ( E ) l - l ‘  ( 2 )  

S: = A S  { I  - [ 1 / ( 2 S ) ] b t b i ] i ’ 2  b; 

S; = h S b t  { 1 - [ l / ( 2 S ) ] b ~ b i ] i ’ Z  
(3) 

S l  = S - bfb; 
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we obtain at T = 0 to second order in I the well known expressions (see e.g. [lo]) 
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C k T ( E )  = -IS + 2 1 z S c  f k + q , l  

’I E - ‘ k t q . 1  f 

- f k - q , T  C k l ( E )  = I S + 2 1 2 S c  
E - ‘ k - q , T  - w q  9 

where wq = 2S(J0 - J,) Y D Q ~  is the magnon frequency, f k s  = f ( f k , )  is the 
Fermi distribution function, E ~ ~ , ~  = ck  IS. The many-electron second-order terms 
in (4) yield logarithmic corrections at E + 0, which are cut at the magnon energies. 
It is natural to define the quantity I,, in terms of the spin splitting of the conduction 
electron at the Fermi level 

C k L ( E )  - C k T ( E )  = 21efS k = kF, E = 0. (5 )  
Then the contribution of intermediate electron states with energies C < E ~ ~ ~ , - ~  < 
C + 6C in (4) is given by 

61ef(C) = I 2  
1 + I 2  

1 

C<rr+.,,<C+6C ‘k+q.T -k uq c<<*+q,,<c+6c c k + g , l  - wq 

Y ( p 1 2 / W ) 6 C  In (( C - W ) / (  C + W ) )  (6) 
where W = 4Dkg, and p is the density of states at the Fcrmi level. For W i 0 we 
obtain from (6) 

6I,,(C) = -(2pTz/C)6C (7) 
which coincides with the result in the case of one impurity, obtained in [16] for 
a different definition of lef. Making in aI,/aC the replacements I i Ief(C), 
G + Gef( C) and introducing the dimensionless coupling constant 

9 = -2IP S,f(C) = .-2Ief(C)P (8) 

a g e , ( c ) / a c =  ( g ~ f ( ~ ) / 2 ~ ~ , ( ~ ) ) ~ ( ( ~ ~ W ~ , ( ~ ) ) / ( ~ - ~ ~ f ( ~ ) ) ) .  (9) 

we obtain the renormalization-group equation 

The dependence We,( C) arises due to many-electron corrections to the magnon 
frequency. The second scaling equation determining Zef( C) will be obtained in the 
next section. Now we consider the AFM case. -4s demonstrated in [lo] ,  unlike the 
FM situation, Kondo-like contributions to the self-energy arise in the third order in 
I, since the leading contribution of the AFM gap to the electron spectrum is of order 
1’. It is convenient to we the matrix representation including the longitudinal (in the 
local coordinate system) part of the s-f interaction, which describes the formation of 
the AFM gap, in the zero-order Hamiltonian. Passing to the magnon representation, 
we rewrite the Hamiltonian (1) in the form 

H = Hu+ Hi, (10) 
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where +: = ( C & , C : + ~ , ~ )  are the spinor Fermi operators, a: are the magnon 
creation operators, Q is the wavevector of the MM structure (we put for simplicity 
2Q = G with G being a reciprocal-lattice vector), 
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is the zero-order electron energy matrix, 

(14) W, = 1(5 /2 )  112 [(U, - v,)(a+, + aq)a, - i(uq + v,)(a?, - aq)u , ]  

is the operator of the electron-magnon interaction, and uq and vq are the coellicients 
of the Bogoliubov transformation diagonalizing the f-f interaction Hamiltonian, 

w2 q = 4Sz(JQ - J q ) ( J Q  - JQ+,).  

((+k I +:))E = [ E  - E, - x(k, E)]- '  

(16) 
Tb obtain the many-electron Kondo contributions, it is sulficient to calculate the 
matrix self-energy defined by 

(17) 
to second order in W,. Using the diagram techniquc in the Matsubara rcpresentation, 
we derive 

x ( (U 9 q  - )'u,[it, -iw, - f (ek- ,  + E ~ + ~ - ~ )  

+ ( U ,  + v,)2a,[ic, - iw, - i ( c k - q  + 
+ i ( c k - q  - Ek+Q-q)'z  - l s u ~ ~ u z  

1 

+ ; ( ' k - q  - E k + Q - q ) m z  - 1su=1u9}  

E, ,2 (k )  = ; ( E k  + ' k + Q )  i [ : ( E k  - t k + Q ) Z  + 1 2 S Z l " 2  

(18) 

(19) 

where E ,  = ( 2 n  + l)rrT, w, = 2mrrT, m,n = 0, i l , .  . . and 

is the electron spectrum in the mean-field approximation. We assume that the 'ncsting' 
condition ektQ = - e k  is not satisficd, so that the AFM gap does not destroy the Fermi 
surface. Then we may put in (18) E,(k) rz t k ,  E,(k) 2 lb determine I,, we 
have to calculate the term in (18) that is proportional to ms (this renormalizes the 

gap): 

4, = 1 - ( 1 / s F , ( k > E ) L k = . = " .  (20) 

Such a definition is equivalent to that for a ferromagnet (5). Calculating the sum 
over w,, retaining only contributions with the Fermi functions and performing the 
analytical continuation kn -t E + io, we derive 
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When taking into account spin dynamics, the space dimension turns out, unlike 
the usual Kondo effect, to be important. We consider two-dimensional and three- 
dimensional cases. The former may be relevant to the current carriers in copper oxide 
planes of high-ll; superconductors and parent compounds (e.g. in the antiferromagnet 
Pr,-,Y,Ba,Cu,O, with large electronic specific beat [17]). Calculating the integral 
in (21) in the approximation up = w ~ + ~  = uaq (U, is the antiferromagnon velocity) 
and introducing the coupling constant (S ) ,  we derive 

with the bare value 5 = 2uakF. In the paramagnetic phase the s-f iliteraction results 
in the Occurrence of electron damping, which is determined by Im E,( E ) ,  rather 
than of spectrum spin splitting. In the third order of perturbation theory in I we 
obtain the Kondo singular corrections [lo], which differ from those for one impurity 
by the replacement 

where li,(u) is the spectral density of the Green function for interacting f spins, 
normalized to unity. The correction 61,, is found from the renormalization of I in 
the second-order expression for the damping by the Kondo third-ordcr contribution. 
If we adopt the spin diffusion approximation 

I i , (w)  = ( 1 / . r ) W / [ W 2  + (m2)21 (24) 

with D, - J S 2  the spin diffusion constant, we obtain the equation for the coupling 
constant in the 3~ case 

the characteristic spin diffusion frequency i E  = 4iD,kg being purely imaginary (spin 
dynamics is dissipative). 

In all cases the rcnormalization-group equation may be represented in the form 

ag,dc)/ac = (26) 

where the explicit form of the function 4 depends on the type of magnetic ordering 
and space dimension: 

( [1/(22)1 InI ( l+  2)/(1- .)I 3D FM 

(1  - 22)--1/2 2D N M  

-( 1 / 2 2 )  In( 1 - x2) 3D AFM 
4(x) = 

3D PM. 

Note that the condition d(0) = 1, which guarantees the correct limit of one Kondo 
impurity [16], is satisfied. It is interesting that there is no essential difference between 
FM, AFM and PM phases in terms of g.,. 



9666 

3. Renormnlizotion of spin dynamics frequencies 

The problem of spin-fluctuation frequency renormalization in the PM phase was 
considered in [l l] .  The  mean square of the frequency was determined from the 
second moment of the spin Green function 

V Yu Irkhin and M I  Katsnelson 

(U;) = (3;,s:Y)/(s;,s:Y) (28) 

P 
( A ,  B )  = 1 dX (c'~'Ac-~''  (29) 

U 

Ib second order in I one obtains 

(U:) = ( ~ ~ ) ~ = ~ [ l  - 412(1 - a,)C] (30) 

where W is of the order of the conduction hand width, and 

a = J; ( sin(kFR,) JA[l-cos(qR)] (32) 
q k, R 

is a function of q with values 0 < aY < 1. In the nearest-neighbour approximation 
for J x ,  n docs not depend on q: 

a,  a = [sin(kFd)/kFd]* (33) 

where d is the distance between nearest neighbours. If one  takes into account the 
cutting of the Kondo divergence at spin-fluctuation frequencies, expression (31) is 
replaced by 

which yields in the diffusion approximation (24) 

Substituting (35) into (30), picking out the contributions from the layers with occupied 
electron states with C < c P  < C + 6C and introducing the coupling constant (S), 
we obtain the scaling equation for GJC) 

a l n w , , ( C ) / a c  = -[(I - a)/2C19,2t(C)~(W.r(C)/C) (36) 

with the same function #(z) as in (25)  and (27). Consider the case of a ferromagnet. 
lb obtain the leading (in I )  many-electron correction to the magnon frequency, one  
has to pcrform in the equation of motion for the magnon Green function 

4% I b:L = 1 + (([b, ,  NI I b:))'., (37) 
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commutation with the Heisenberg f-f Hamiltonian only. Using (3) the latter may be 
represented to first order in 1/S in the form 
H ,  = 2 S x ( J u - J q ) b : b q +  ic(Jq + J , - 2 J q _ , ) b : b : b , b q t p _ , .  (38) 

q 9PY 
Then we obtain for the magnon pole the standard result 

~ q = 2 S ( J u - J q ) + 2 ~ ( J p + J q - J p - q  - J " ) ( b ; b , )  (39) 
P 

which takes into account the magnon-magnon interaction. The magnon occupation 
numbers wntain the zero-point contributions, which arise through the finite damping 
y p ( w )  due to electron-magnon interaction [lo]: 

. .  
Substituting (40) into (39), picking out the contribution from the layer with C < 
eIri  < C +  SC, carrying out the integration in the nearcst-neighbour approximation 
and summing over Q, we obtain the same result (36). 

Finally for the AFM phase we have (cf [IO]) 
w 2  P = Cz q q  - D2 (41) 

cq = S ( ~ J Q - J Q + ~ -  J , ) - ~ ( ~ J Q + ~ J Q + ~ - ~ -  J , - J q - J ~ + p - J ~ + q ) ( b ~ b p )  

P 

- C(JQ+p - J p ) ( b p b - p )  (42) 
r 

Dq = s(JQ+q - J q )  -c(JQ+q + J Q + p - J q  - . ' ~ ) ( ~ ; ~ p ) + z ( ~ Q + p  f J p ) ( b p b - p )  
P P 

(43) 
where bt  are creation operators for spin deviations in the local coordinate system. 
We obtain similar to (40) (see [lo]) 

In the nearest-neighbour approximation where JqiQ = - J q  we derivc 

where the constant a is given by (33). Then we havc again the result (36) with the 
corresponding choice of the function $(z) in (27) .  In the same way we may obtain 
the renarmali?ation-group equation for the magnetic moment. In the PM phase this 
is determined from the Curie constant in the static magnetic susceptibility 

and in the FM and AFM phases by 
X ( T )  = C ( T ) / T  C ( T )  = S:,(T)/3 (46) 

(47) 
- 
S, = S - x ( b : b P ) .  

Tdking into account the 'Kondo' corrections to x [IO] and magnon occupation 
numbers (40) and (44), we obtain for all the phases 

where the function 4 is defined hy the same equation (27). 
alnz,,(c)/aC = (s~~(c)/C)$(w,,(C)/C) (48) 
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4. Investigation of renormalization-group equations 

The system of scaling squations obtained in previous sections may be represented as 
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ag,r(C)/ac = A (49) 

alnGer(C)/aC= - f ( l - a ) A  (50) 

A = A ( C > = d ( c ) )  = ( g ~ r ( c ) / c ) ~ i W ~ , i c ) / c ) .  (52) 

ger(C)+[2/ (1 - a ) ] l n ~ , , ( C )  = constant (53) 

W,, (C)  = =exp (-$(1- a)[s.r(C) - d }  (54) 

ag,,/at = dr* ( A  + $cl- - (1 (55) 

rk(z) = 4(e-") rk(z > 1) = 1 (56) 

= In IMI/CI X = In j W / ~ l >  1 (57) 

The first integral of the system (49), ( S O )  reads 

which yields 

where G is the bare characteristic spin-fluctuation energy (without Kondo 
renormalizations). Substituting (54) into (49) we obtain 

where 

and W is the cut-off energy of the order of the bandwidth, at which ger( C) coincides 
with the bare value g. Spin dynamics enters (56) via the parameter X and the function *. Consider the region where 

E < + $cl- a)s,,(O. (58) 

9,dO = g / i l -  9 0 .  (59) 

Then we may replace in (55)  Q(z) by unity to obtain 

The inequality (58) holds in the region 
the equation 

< 5, where E ,  is the minimal solution to 

x + f (1-  a ) g / ( l  - gF)  = F .  (60) 

At ( 2 c, the effective coupling constant se , ( { )  begins to deviate appreciably from 
the 'one-impurity' behaviour (59). lb investigate thc further evolution of gel one has 
to solve equation (55) explicitly. It is convenient to represent the latter in the form 

1/S7d(F)  = l /g  - X(E) (61) 

where 
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Consider the 'Kondo' case g > 0 ( I  < 0). Since Q(z) is a positive monotonically 
increasing function of x, it follows from (61) that ger(E) is a monotonically 
increasing function. Suppose that a futed point with finite coupling constant exists, 
S,[(F -a) - 9'. Then 

M ( X )  < X(M) < M(X + g 1 -  0)s ' )  (63) 
where 

By virtue of (56) we may replace in (63) M ( z )  - z to obtain 

A9 < 1 9' < (2/g)(1- Xg) / ( l -  0). (65) 

ij < TK Wexp(-l/g) (66) 

Thus at Ay > 1, i.e. 

the supposition about finiteness of g' leads to a contradiction, and there exists a 
point e' where se[(€')  diverges. Then (54) gives i j e , ( c * )  = 0. AF follows from the 
comparison of (50) and (51), 

- 
S,,({)/S = [ije,(t)/ij]l/('-e). (67) 

Therefore ??e,(c') = 0 too. Detailed investigation of the true dependences G e t ( ( )  
and ze,(<) in this regime requires a scaling consideration beyond perturbation 
theory (e.g. by using the numerical renormalization-group technique). Qualitativcly, a 
strong-coupling region with total compensation of the magnetic moment exists iindcr 
condition (66), spin dynamics being totally suppressed. This case is rclevaiit also for 
diluted Kondo systems where ij - 0, X 4 w. We see that the Kondo divergences in 
such a situation may be cut at static magnetic fields only, but not at spin dynamics 
frequencies, which are renormalized to zero. 

In the opposite case Xg c< 1 we obtain from (60), (54) and (67) 

F l  = + (1  - g d F 1 )  = Y + X g 2  (68) 
i j ' = w , [ ( F l ) ~ w [ 1 - ~ ( l - a ) X g ]  2 (69) -. 
s = S,,(FI) S ( 1 -  fXgZ). (70) 

At [ > cl the increase of the coupling constant (see (59)) stops, and we obtain 
X ( f )  - X << l/g. Then (61) yields ger g at any c, so that the perturbation 
expressions (69) and (70) (cf [lo]) are the final results in the regime under 
consideration, and we have the usual magnetic stdtc. 

As follows from the second inequality in (65), in the region 

0 < 1 - X g = O ( g )  g - 0  (71) 
one has g' = 0(1), We, and %e, being renormalized several times. Thus thc condition 
(71) determines the region of parameter values where the 'Kondo magnet' State with 
considerably suppressed, but finite, se, and ijef occurs. In such a state, by virtue of 
(54), (65) and (67), 

ij' = q [ ( e  = m) > TK 
s = 3JF = m) > s(TK/ij)l'(l-e). 

(72) -. 
(73) 
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Consider the case of the ‘ferromagnetic’ s-f exchange I > 0 ( g  < 0). Then, for 
191 << 1, we have lger(E)I 1 at any t ,  and 

X(E + m) 5 M ( A )  Y A .  (74) 
Thus we can sum up the logarithmic divergences in all the orders of perturbation 
theory. Similar to (72) and (73) we obtain 

9’ = g / ( l -  Ag) (75) 

(76) w = w exp(-$(1- a)AgZ/(I - Ag)] 

s = s exp[-fAgz/(l - xg)]. (77) 

-* 

-. 

5. Discussion and conclusions 

First we discuss the more simple case I > 0. This corresponds to the situation where 
the intra-atomic ‘Hund’ interaction dominatcs over the hybridization (Schricffcr- 
Wolf€) contribution to the s f  interaction, and is apparently realized in ‘usual’ f 
magnets including elemental rare-earth metals (the hybridization contribution is small 
in the case where characteristics of f electrons are close to those in free atoms). 
Usually ( g (  is small in such a situation (in rare-earth metals / g (  - IO-’). Then we 
may restrict ourselves to the second-order corrections [lo] 

(75) 

(79) 

-* s Y s[l- +g21n( w/w)] 
w Y =[I- +( 1 - a)g’ In( W/CZ)].  -I 

However, for diluted systems of both f and d elements, G may be small enough to 
satisfy the conditions g X  - 1 and even g z X  - 1. Then we have to use the full 
expressions (76) and (77). At (91 << 1, but lglA >> 1 the corrections to saturation 
magnetimtion and spin-dynamics frequencies are of the order of Igl. 

w, three cases are possible: 
(i) w < TK. On approaching the Fermi level C = 0 (physically, with decreasing 

T ) ,  Gel decreases so quickly that it cannot prevent entering the strong-coupling 
region se*({)  = 00 and formation of the singlct nonmagnetic state. Thc ‘Kondo 
temperature’ in the lattice k determined from the condition of divergence of gcr at 
E = Ti.  As follows from (61), 

NOW we pass 10 tne ‘iiondo’ u s e  i < 3, ijcpcntiirig oiri iiie ~ k t i ~ f i  G? 7;, 

l / g  = X(ln  WIT,). (80) 

This quantity differs somewhat from the corresponding one-impurity value: Ti  < TK 
since X ( ( )  < E .  This regime is relevant for diluted Kondo systems where ZZ 4 0 
and for nonmagnetic Kondo lattices (e.g., CeCu,). 

(ii) TK < w < AT, with A 2 1 (see equation (71)). A rather strong Suppression 
of magnetic moment and spin dynamics takes place, but the ground State remains 
magnetic, the saturation moment increasing from zero to a quantity of order of pg 
with increasing w. Apparently, this case corresponds to ‘Kondo’ and hcavy-fermion 
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magnetic systems. It is important that the magnetic moment may change strongly for 
small variations of the bare coupling constant 9: 

6 g - g 2 < < g  g - l / l n ( W / i j ) .  (81) 

This explains qualitatively the high sensitivity of magnetic propertics of heavy-fermion 
systems to doping and external pressure, 

(iii) ij >> TK. This case corresponds to the usual (‘non-Kondo’) magnets with 
I < 0. It is sufficient here to take into account the second-order corrections (80). 

Let us consider some questions concerning the applicability of the results obtained 
to real anomalous f systems. 

Using the s-f exchange modcl (rather than, say, the Anderson-lattice model) in 
our consideration seems to be unimportant, since, for small coupling constants, the 
properties of the two models are similar. 

Of course, intermediate valence systems cannot be treated within the s-f modcl. 
If we consider them as Kondo lattices with high T,, we come to the conclusion 
that they should be, as a rule, non-magnetic. An important question is that about 
thc nature of the ‘Kondo’ state with g., - M (< - <*). As follows from our 
consideration in the mcan-field approximation for T (< TK [l l ,  121, such a state may 
be ferromagnetic if the number of current carriers is smaller than that of localized 
spins. Thus, entering the strong-coupling region does not inevitably mean formation 
of singlet states on  all the sites. However, in any case thc peculiar ‘Kondo’ state 
is formed. In the mean-field approximation the latter is described by an order 
parameter corresponding to coupling (hybridization) of conduction electrons with 
f pseudo-fermions, the quasi-particle spectrum being of the same form as in the 
hybridization model with a characteristic energy scalc T,. The prohlcm of magnetic 
properties of systems with such a spectrum nceds further investigation. According 
to [11, 121, they are  reminiscent of the properties of itincrant magnets with Stoner 
exchange parameter bcing replaced by intersite Heisenberg interaction. Of great 
interest are the heayfermion systems with a Vanishing number of currcnt carricrs 
like Sm,Se, [18] and Yb,As,-,P, [19]. A hypothesis was put forward in I201 that 
such systems possess a resonating valence bond (RVB) type state with Fermi excitations 
in the localized spin (or pseudo-spin) system. A scaling consideration of saturation 
moment renormalization and spin dynamics in such a situation would be instructive. 
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